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This study in a shale-oil formation quantified the hydraulic fracture

propagation process and described the fracture geometry by

developing a geomechanical forward model and a Green’s function-

based inversion model for low-frequency distributed acoustic

sensing data interpretation, substantially enhancing the value of the

LF-DAS data in the process.
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The propagation process and geometry of hydraulic fractures depend on complex interactions among the

induced fractures and the pre-existing rock fabric, the heterogeneous rock properties, and the stress state.

Accurate characterization of the resulting complex hydraulic-fracture geometry remains challenging. Fiber-

optic-based distributed acoustic sensing (DAS) measurements have been used for monitoring hydraulic

fracturing in adjacent treatment wells. DAS requires an optical �ber attached to the wellbore to transmit

the laser energy into the reservoir. Each section of the �ber scatters a small portion of the laser energy

back to a surface sensing unit, which uses interferometry techniques to determine strain changes along

with the �ber. DAS data in o�set wells fall in the low-frequency bands, which has been proven to be a

powerful attribute for the characterization of the geometry of hydraulic fractures.

Numerous recently published �eld examples demonstrate the potential of low-frequency DAS (LF-DAS)

data for the detailed characterization of the hydraulic fracture geometry. Understanding the fracture-

induced rock deformation associated with LF-DAS signals would be bene�cial for the better interpretation

of real-time data. However, interpretation of LF-DAS measurement is challenging due to the complexity of

the subsurface conditions, in addition to potential unanticipated completion issues such as perforation

failure, stage isolation failure, etc. All current research e�orts focus on the qualitative interpretation of �eld

data.
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In this study, we quanti�ed the hydraulic fracture propagation process and described the fracture

geometry by developing a geomechanical forward model and a Green’s function-based inversion model for

the LF-DAS data interpretation, substantially enhancing the value of the LF-DAS data in the process. The

work has a signi�cant transformative potential, involving a tool package with developed forward and

inversion models that can provide crucial insights for the optimization of hydraulic-fracturing treatments

and reservoir development.

Methodology

The tool package can be used directly in the �eld to interpret LF-DAS data and monitor hydraulic fracture

propagation. Raw data from the �eld measurement can be automatically processed. The geomechanics

forward model we developed can quantify and analyze the strain-rate response from the LF-DAS

measurements based on the 3D displacement discontinuity method. Fracture hits are detected by

calculating three 1D features along the channel (location) axis, i.e., the maximum strain rate, the

summation of strain rates, and the summation of strain-rate amplitudes. Channels with fracture hits

usually exhibit signi�cant peak values of these three features. We proposed general guidelines for fracture-

hit detection based on the quantitative analysis of strain/strain-rate responses during the multistage

fracturing treatment. The details of the forward model can be found in Liu et al. (SPE 202482, SPE 204457,

ARMA-2020-1426).

Additionally, we developed a novel Green’s function-based inversion model to qualify fracture width and

height based on the determined fracture hits. The strain �eld that is estimated from the integration of the

strain rates measured by the LF-DAS data along the o�set monitoring well is related to the fracture widths

through a geomechanics Green’s function. The resulting linear system of equations is solved by the least-

square method. Details can be found in Liu et al. (SPE 204158, SPE 205379, SPE 204225).

Field Application

The developed models were applied to an unconventional shale oil formation with two horizontal wells.

The two wells are at the same depth and parallel to each other, separated by a distance of 1,300 ft. We

analyzed the DAS �ber data recorded during the fracturing treatment of four consecutive stages named T1,

T2, T3, and T4. At each stage, eight perforation clusters were stimulated simultaneously and the cluster

spacing was about 22–23 ft. Stage T1, the closest to the toe of the well, was stimulated �rst, and Stage T4,

the closest to the heel, was stimulated last. In the following discussion, we concentrate on the analysis of

fracture hits and the fracture geometry associated with Stage T2.

Detection of fracture hits. Fig. 1 shows the LF-DAS strain-rate data recorded at the o�set monitoring well

during the stimulation of Stage T2, as well as the corresponding three feature plots. The values of the three

features were calculated using the data before the end of injection—indicated by the white dashed line in
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the waterfall plot of Fig. 1. The location axis is the measured depth along with the monitoring well.

According to the guidelines based on the conclusions from the forward model, the fracture-hit locations are

identi�ed by the local peak values or de�ections of the feature plots and are marked by the black dashed

lines of Fig. 1. There are �ve such detected fracture hits in Stage T2. During the stimulation treatment of

this stage, the fracturing �uid leaks into the previous stage (Stage T1) and reopens the three pre-existing

fractures indicated by the red dashed lines. Based on the time of fracture hits and the hydraulic di�usivity

of the fracture, the half-length of the fractures that encounter the monitoring well ranges from 1,370 to

1,870 ft at the end of injection.

Fig. 1—LF-DAS strain-rate data and corresponding features of Stage T2. The black dash lines mark the fracture-hit

channels in the current stage; the red dash lines indicate the fractures from the previous stage; and the white dash line

denotes the end of injection.

Fracture azimuth estimation. The locations of perforation clusters in the treatment well, the

corresponding locations of the fracture hits in the o�set monitoring well and their connections are shown

in Fig. 2. The fracture propagation direction is between 229° and 233° from North and the azimuth of the

well trajectory is 140° from North, indicating that the fractures are mainly planar and propagate nearly

perpendicular to the wellbore in the formation. From the fracture-hit mapping in Fig. 2, it is worth noting

that the fractures from the �rst two toe clusters in each stage usually cannot approach the monitoring well,

which may be caused by stress-shadow e�ects associated with the previous stages.
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Fig. 2—Map of hydraulic-fracture azimuths. The lines connect the fracture-hit locations on the monitoring well with their

corresponding perforation clusters on the treatment well.

Fracture width calculation. The strain-rate data in Fig. 1 were integrated in time to obtain the strain data

for the inversion model. Fig. 3 compares the �eld-measured (Fig. 3a) and the calculated strain (Fig. 3b) data

based on the inversion model and shows a good agreement of the two data sets. It should be noted that

strain data near the fractures were excluded from the inversion process because of their intrinsic

measurement bias. Fig. 4 shows the fracture width at the monitoring well as a function of the treatment

time for each fracture hit in the current stage (T2) and the previous stage (T1), as quanti�ed by the

associated time-variable fracturing treatment rate and volume. Fracture 1 is closest to the toe side and

Fracture 5 is closest to the heel side. At the end of the fracturing �uid injection, the widths of Fractures 3, 4,

and 5 in Stage T2 range from 0.2 to 0.4 mm; Fractures 1 and 2 initially open and then close during the

treatment. Fractures in the previous stage (T1) reopen a maximum of 0.2 mm due to leakage of the

fracturing �uid.
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Fig. 3—Comparison of the �eld-measured and the calculated strain data based on the inversion model shows a good

agreement of the two data sets. (a) Waterfall plots of �eld LF-DAS strain data. (b) Strain data calculated by the inversion

algorithm.

Fig. 4—The fracture width at the monitoring well as a function of the treatment time for each fracture hit in the current

(T2) and the previous stage. (a) Width evolution of each individual fracture in Stage 2, as a�ected by pumping rate and

volume changing with time. (b) Width evolution of individual fractures in the Stage 3 with pumping rate and volume

changing with time. The black dashed line indicates the �rst fracture-hit time; the black solid line indicates the end of

injection.

Fracture height estimation. We estimated the fracture height at the end of �uid injection by calculating

the strain pro�les associated with di�erent fracture heights, ranging from 40 to 100 m (Fig. 5). Fig. 5a

shows the average absolute errors between calculated and measured strains for di�erent fracture heights,

normalized by the minimum error. The results indicate that the error is minimized for a fracture height of

80 m. To visualize the di�erences, Fig. 5b compares the strain pro�les calculated with di�erent heights

against the measured strains along with the monitoring well and shows that the strain pro�le for an 80-m

height best matches the true strain pro�le.
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Fig. 5—The estimated fracture height at the end of �uid injection determined by calculating the strain pro�les associated

with di�erent fracture heights. (a) Normalized absolute errors between calculated and measured strains of di�erent

fracture heights. (b) Measured strain pro�le and strain pro�les calculated for fracture heights of 30 m, 80 m, and 100 m.

Conclusion

A tool package including (a) a geomechanics forward model and (b) a Green’s function-based inversion

model was developed to comprehensively interpret LF-DAS data, to elucidate the mechanisms of strain-

rate responses, to identify fracture hits, and to characterize the complex geometries of fractures. The

models were successfully applied to a �eld study in a shale-oil formation. The �eld study concluded that

only four to �ve fractures out of eight designed clusters hit the monitoring well positioned at an o�set

distance of 1,300 ft. Our analysis results include (a) fracture widths near the monitoring well reaching 0.4

mm, (b) the aperture of reopening fractures reaching 0.2 mm, (c) impactful fracturing �uid leakage into the

previous stage, (d) an average fracture height of approximately 80 m, and (e) half-lengths of fractures that

encounter the monitoring well ranging from 1,370 to 1,870 ft.
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